Solution of Integral Equation in Two-Dimensional using Spectral Relationships
نویسندگان
چکیده
منابع مشابه
Approximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse functions
In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs) is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm integral equation. Finally the accuracy of this method will be shown by an example.
متن کاملAPPROXIMATION SOLUTION OF TWO-DIMENSIONAL LINEAR STOCHASTIC FREDHOLM INTEGRAL EQUATION BY APPLYING THE HAAR WAVELET
In this paper, we introduce an efficient method based on Haar wavelet to approximate a solutionfor the two-dimensional linear stochastic Fredholm integral equation. We also give an example to demonstrate the accuracy of the method.
متن کاملNumerical solution of a class of nonlinear two-dimensional integral equations using Bernoulli polynomials
In this study, the Bernoulli polynomials are used to obtain an approximate solution of a class of nonlinear two-dimensional integral equations. To this aim, the operational matrices of integration and the product for Bernoulli polynomials are derived and utilized to reduce the considered problem to a system of nonlinear algebraic equations. Some examples are presented to illustrate the efficien...
متن کاملA Spectral Integral Equation Solution of the Gross-Pitaevskii Equation
The Gross-Pitaevskii equation (GPE), that describes the wave function of a number of coherent Bose particles contained in a trap, contains the cube of the normalized wave function, times a factor proportional to the number of coherent atoms. The square of the wave function, times the above mentioned factor, is defined as the Hartree potential. A method implemented here for the numerical solutio...
متن کاملNumerical solution of two-dimensional fuzzy Fredholm integral equations using collocation fuzzy wavelet like operator
In this paper, first we propose a new method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equations of the second kind based on the fuzzy wavelet like operator. Then, we discuss and investigate the convergence and error analysis of the proposed method. Finally, to show the accuracy of the proposed method, we present two numerical examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Global Journal of Computer Science and Technology
سال: 2020
ISSN: 0975-4172,0975-4350
DOI: 10.34257/gjsfrfvol20is2pg1